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Thick-walled cylinders are widely used in various engineering applications. In an optimal
design of pressurized thick-walled cylinders, an increase in the allowable internal pressure
can be achieved by an autofrettage process. In the paper, analysis is carried out to develop
a procedure in which the autofrettage pressure is determined analytically. The obtained
equivalent stress distribution is compared with those of the conventional solid wall and
of several multi-layer vessels. The results of the analytical approach are verified by FEM
modelling. Tensile tests have been carried out to determine the real mechanical properties
of the material of the vessel and to create a material model. The presented example illustrates
the advantages of the autofrettage technique.
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1. Introduction

Modern power engineering systems and advanced chemical technologies require the use of large
thick-walled pressure vessels sustaining the pressure of hundreds MPa. Conventional methods
of one thick shell manufacturing (forging or rolling of thick sheets) resulted in technological
difficulties and became too expensive. These problems forced engineers to search for new po-
ssibilities of increasing load bearing capacity of the vessel. Now, the autofrettage technique is
commonly applied to improve the resultant stress distribution and to increase the capacity of the
vessel.
A number of contributions to the autofrettage technique have appeared recently. Solutions

have been obtained either in an analytical form or with numerical implementations. A proce-
dure for elastic-plastic analysis of a thick-walled cylinder under internal pressure was proposed
by Zhao et al. (2003). It involves two parametric functions and piecewise linearization of the
stress-strain curve. The method provides a general elastic-plastic solution which accounts for
the effect of deformed geometry due to high operating pressure. The optimum autofrettage pres-
sure was determined by Ayob and Elbasheer (2007) analytically. A validation by a numerical
simulation shows that the analytical approach and numerical results correlate well. Majzoobi
et al. (2003) used both numerical and experimental techniques for the investigations of the
autofrettage process and its influence on the pressure capacity. A finite element analysis was
performed by Alegre et al. (2006) to obtain the residual stresses after the autofrettage for the
vessel made of the material which shows strong Bauschinger’s effect. The simulation procedure
may be applied for other autofrettage designs that need the Bauschinger effect of the material
to be considered. An autofrettage model considering the material strain-hardening relation-
ship and the Bauschinger effect, based on the actual tensile-compressive stress-strain curve of
material, plane-strain, and modified yield criterion was proposed by Huang and Cui (2006).
The predicted residual stress distributions of autofrettaged tubes from the considered model
were compared with the numerical results and the experimental data. The influence of Bau-
schinger effect and yield criterion on the residual stress was discussed based on the introduced
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model. An analytical study of spherical autofrettage-treated pressure vessels, considering the
Bauschinger effect was presented by Adibi-Asl and Livieri (2007), where a general analytical
solution for stress and strain distributions was proposed for both loading and unloading phases.
The optimization procedure, numerical simulation and experiments were employed by Majzo-
obi and Ghomi (2006) to determine the minimum weight of a compound cylinder for a specific
pressure.
Many researchers have focused on methods to extend vessels lifetimes. Fatigue analysis was

performed by Koh (2000) to predict the fatigue life of an autofrettaged pressure vessel containing
radial holes subjected to cyclic internal pressure. Finite element analysis was used to calculate
the residual and operating stress distributions and to determine numerical stress concentration
factors at the hole. Analysis of the combined effect of autofrettage and shrink-fit in a multi-layer
vessel was carried out by Kumar et al. (2011). Thicknesses of layers, autofrettage percentage
and radial interference for the shrink-fit were assumed as design variables, whereas hoop stress
throughout the thickness was the objective function. Calculation of fatigue life for several ca-
ses was studied. The optimum design of a similar 3-layered vessel for maximum fatigue life
expectancy under the combined effects of autofrettage and shrink-fit was performed by Jahed et
al. (2006). The numerical optimization procedure was employed to obtain the optimum size of
each layer and to optimize the initial stress distribution. The results showed that with a proper
combination of operations, a significant life enhancement could be achieved.
The Tresca-Guest yield condition (the T-G condition) and the Huber-Mises-Hencky yield

condition (the H-M-H condition) are used in the present paper to develop a procedure in which
the autofrettage pressure is determined analytically. The obtained reduced equivalent stress
distribution is compared with distributions for a solid virgin cylinder and for the multi-layer
vessel with modified initial stress distribution. A finite element method (FEM) using ANSYS RO
simulation is carried out on the cylinder to develop a procedure in which the autofrettage
process is determined numerically. The real properties of the vessel material are introduced
into numerical simulation with the Bauschinger effect implemented. The numerical example
illustrates the advantages of the autofrettage technique.

2. Analytical solution of the autofrettaged vessel

Theoretical distributions of radial and circumferential stresses in cylindrical vessels within the
elastic range must satisfy Lame’s equations (Timoshenko and Goodier, 1951). For this reason,
the corresponding distribution of equivalent stress σeq in the solid wall is precisely determined.
In a solid nonpressurized cylinder subjected to the inner operating pressure popr, the maximum
equivalent stress σ′eq max appears at the inner radius while the outer parts of the wall are less
loaded. In many industrial applications it is important to decrease the maximum equivalent stress
in the wall or to reduce σeq at the outermost surfaces, which may be additionally subjected to
action of aggressive fluids (Fig. 1).
Autofrettage is often used to introduce advantageous residual stresses into thick-walled pres-

sure vessels and to enhance their pressure bearing capacity. In this technique, the vessel is
subjected to an internal pressure large enough to cause yielding within the wall near the inner
surface. Large scale yielding occurs in the autofrettaged cylinder wall. Upon the release of this
pressure, a compressive residual circumferential stress is developed to a certain radial depth at
the bore. These residual stresses serve to reduce the stresses obtained as a result of subsequent
application of the operating pressure, thus increasing the load bearing capacity.
The degree of autofrettage in the thick-walled cylinder of inner and outer radii ri and ro,

respectively, subjected to the inner autofrettage pressure pa, is defined as a junction (limit)
radius rj of wall thickness occupied by the plastic zone. The radial σelr and circumferential σ

el
ϕ
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Fig. 1. Condition of minimum equivalent stress σeq at the junction radius rj under the operating
pressure popr. Distribution of stress σeq : (a) – in a solid virgin wall, (b) – in the optimum

autofrettaged vessel

stresses within the elastic region rj ¬ r ¬ ro are given in terms of the radius r by well-known
Lame’s formulation

σelr = C1 −
C2
r2

σelϕ = C1 +
C2
r2

(2.1)

In the plastic region ri ¬ r ¬ rj , theoretical distributions of stress depend on the applied
assumptions and the yield theory defining the equivalent stress σeq. For the elastic-perfectly
plastic material model and when the material is incompressible in plastic deformation (ν = 0.5),
the more complex H-M-H [Φf ] yield condition may by linearized for plain strain (εz = 0) to
that similar to the T-G [τmax] one

|σplr − σplϕ | = CSy (2.2)

where Sy stands for the yield stress. The coefficient C depends on the applied yield theory, and
for the T-G yield condition C = 1, and for the H-M-H yield condition C = 2/

√
3. Finally, in

both cases, the stresses in the plastic region are expressed by the same equations

σplr = CSy ln
( r

ro

)

+ C3 σplϕ = CSy
[

ln
( r

ro

)

+ 1
]

+ C3 (2.3)

Three constants of integration may be determined from the appropriate boundary conditions
and the condition of stress continuity across the elastic-plastic boundary at the junction radius rj

r = ri σplr = −pa
r = rj σplr = σ

el
r σplϕ = σ

el
ϕ

r = ro σelr = 0

(2.4)

where the additional fourth condition relates the autofrettage pressure pa to the limit radius rj

pa = CSy
[

ln
(rj
ri

)

+
r2o − r2j
2r2o

]

(2.5)

Equation (2.5) is valid for both yield conditions after substituting for C the appropriate value.
If the autofrettage pressure is removed after a part of the cylinder thickness has become

plastic, a residual stress is set up in the wall. Assuming that during unloading the material follows
Hooke’s law, the residual stress can be easily obtained. The maximum equivalent stress σeq max
in the autofrettaged vessel subjected to the operating pressure popr appears at the junction
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radius rj (Fig. 1) and does not depend on the used yield criterion. If the cylinder is loaded
again with the operating pressure, by superposing the residual stresses σresr and σ

res
ϕ due to

autofrettage procedure and stresses σr and σϕ produced by the operating pressure, the final
equivalent stress distribution in the wall versus radius r becomes

σeq(r) =
1
C

∣

∣

∣(σr + σresr )− (σϕ + σresϕ )
∣

∣

∣ (2.6)

and at the junction radius rj takes the form

σeq(rj) =
1
C

2r2i r
2
o

(r2o − r2i )r2j
[popr − pa] + Sy (2.7)

Equivalent stress (2.7) reaches the minimum with respect to r as dσeq(rj)/drj = 0 which
leads to the optimum value of the limit radius

rj opt = ri exp
( popr
CSy

)

(2.8)

It appears that optimization of the equivalent stress along the vessel wall causes that the
difference of equivalent stresses at the outermost radii

σeq(ri) =
1
C

2r2o
r2o − r2i

[popr − pa] + Sy

σeq(ro) =
2r2j
r2o − r2j

( 1
C
pa − Sy ln

rj
ri

)

+
1
C

2r2i
r2o − r2i

[popr − pa]
(2.9)

is minimum, and for rj = rj opt their difference is zero

σeq
∣

∣

∣

r=rj opt
(ri) = σeq

∣

∣

∣

r=rj opt
(ro) = k = min (2.10)

where k stands for the minimum value of the equivalent stress. Junction radius (2.8) is optimal
when for any other value of it an increase in the equivalent stress occurs and the condition of
equal and minimum equivalent stresses at the outermost radii under applied operating pressure is
disturbed. The autofrettage pressure which is necessary to obtain the optimum limit radius, (2.8),
may be determined from Eq. (2.5). In the autofrettaged vessel, the maximum strength σeq max
under the operating pressure popr appears at the junction radius. Application the optimum
autofrettage pressure and partial yielding of the wall to the optimum junction radius causes
minimum equivalent stress under the operating pressure and equal and minimum values of
the equivalent stress at the outermost radii. The maximum operating pressure is equal to the
autofrettage pressure pmax = pa opt. Under this pressure, full yielding of the vessel wall in the
range r < rj opt appears again and the decay of the equivalent stress in the range rj opt ¬ r ¬ ro.
The maximum autofrettage pressure pa extr corresponds to the internal pressure required for

the wall thickness of cylinder to yield completely rj extr = ro. Such a cylinder may be subjected
to the maximum operating pressure pextr = pa extr.

3. Finite element modelling of the autofrettaged vessel

The autofrettage process has been simulated by the finite element method (FEM) making use
of elastic-plastic analysis. Special crude alloy steel 16Mo3 (1.5415) according to PN-EN 10028-
2: 2010 has bsen applied for the vessel wall. This material is assigned to high-temperature appli-
cations and is often used in the high-pressure technology. Actual mechanical properties of this
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material have been determined in tensile tests. A set of cylindrical specimens has been cut from
a segment of a tube in the circumferential direction. The specific values of material data have
been calculated as arithmetical averages of 7 tests: ultimate strength Sut = 518.43MPa, yield
limit Sy = 317.29MPa, maximum strain εut = 0.1750 and plastic strain εpl = 0.0127. They are
defined in Fig. 2 together with the elastic strain which for Young’s modulus E = 2.1 · 105MPa
adopted in the elastic range becomes εel = 0.0015.

Fig. 2. Parabolic and segmental approximation of the real stress-strain curve (in the stretched scale)

The shape of experimental stress-strain curves σ = f(ε) suggests parabolic approximation
beyond the yield limit. The parabola containing the point of coordinates εpl, Sy and reaching
the maximum value at the point εut, Sut (Fig. 2) was applied to describe the tensile behaviour
of material. For the numerical calcuations the parabola was replaced by five segments of different
slopes but of equal length in the orthogonal projection at the ε axis. Such an approximation
enables direct introduction of the nonlinear material properties in the software module ANSYS RO
which was used in the paper.

Moreover, it was assumed that the relationship between the equivalent stress (stress inten-
sity) σeq and equivalent strain (strain intensity) εeq under complex stress states σeq = f(εeq)
was the same as the stress-strain relationship under uniaxial tensile loading. The stress intensity
was derived from the Huber-Mises-Hencky yield criterion and the strain intesity was defined
(Życzkowski, 1981) as

εeq =
2√
3

√

(εr − εϕ)2 + (εϕ − εz)2 + (εz − εr)2 (3.1)

where εr, εϕ and εz are principal strains at a certain point of the cross-section.

The finite element calculations were carried out on the assumption of plain strain which seems
justified as the cylindrical parts of the vessels are usually of considerable length. The material of
the vessel was described by multi-linear kinematic strain hardening with the Baushinger effect
included.

FEM modelling of the vessel wall geometry is simplified because of the axial symmetry.
The numerical model of the wall was built of layers (rectangular slices) of the assumed radii
divided into higher order finite elements PLANE183 adapted to the axial symmetry. The size of
quadratic 8-node finite elements of 0.4mm creates the mesh of sufficient density as an increase
of the density in five times produces the difference in the equivalent stress less than 0.4%. A
typical finite element mesh with boundary conditions applied is presented in Fig. 3.
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Fig. 3. Computational model of the vessel, mesh of finite elements and illustration of introduced
boundary conditions (not to scale)

4. Numerical example

The detailed analytical and numerical calculations were carried out for a cylinder of the
outer diameter 2ro = 800mm subjected to internal pressure. The thickness of the wall was
to = 200mm. The vessel was made of material 16Mo3 with the experimentally confirmed yield
point Sy = 317.29MPa. The vessel was designed for the operating pressure popr under which the
equivalent stress reaches the yield limit Sy at a certain point of the wall. The pressure popr deri-
ved from the T-G [τmax] yield criterion is pTopr = 118.98MPa and that based on the H-M-H [Φf ]
yield criterion is pHopr = 137.39MPa.
On the applied assumptions, the T-G and H-M-H yield conditions may be expressed by the

same equation (2.2) and, therefore, both criteria lead to similar results of the autofrettage. For
this reason, the distributions of equivalent stress at some characteristic radii versus the junction
radius rj for the vessel subjected to the operating pressure pTopr or p

H
opr, respectively, are the

same (Fig. 4). The only difference is in relation (2.5) describing the autofrettage pressure pa
versus the autofrettage radius rj .

Fig. 4. Equivalent stress σeq under pressure pTopr or p
H
opr at the radii: rj , ri and ro, respectively, and

the autofrettage pressure pa versus junction radius rj

The optimum autofrettage radius is the same rj opt = 290.99mm for both criteria, but the
autofrettage pressure is different. For the T-G yield condition, pTa opt = 193.66MPa and for the
H-M-H yield condition, pHa opt = 223.63MPa. Under the pressure p

T
opr or p

H
opr, the equivalent

stress at the outer radii is the same and reaches minimum σeq(ri) = σeq(ro) = 118.14MPa.
The maximum equivalent stress in the considered vessel occurs at the junction radius
σeq(rj opt) = 223.22MPa. The distributions of equivalent stress at the outermost radii σeq|r=ri
and σeq|r=ro are plotted in Fig. 4 versus the junction radius rj (solid fine lines) as well as the
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autofrettage pressure versus the corresponding junction radius (dashed lines). Any other mo-
dification of the residual stress resulting in the junction radius different from rj opt causes an
increase in the maximum equivalent stress σeq(rj opt) which can be seen in Fig. 4 (bold solid
line).
Analytical results for the autofrettaged vessel are gathered in Table 1. The calculations were

carried out for the vessel autofrettaged to the optimum limit radius rj opt and to the maximum
limit radius rj extr = 400mm. In both cases, the vessel was subjected first to the pressure popr
(pTopr or p

H
opr) and then to the maximum pressure (pa opt for rj opt or pa extr for rj extr). The

relative decrease of the maximum equivalent stress ∆σeq with respect to the solid wall was
determined in the first case and the relative increase of the load bearing capacity ∆pmax was
determined in the second case. The total yielding of the wall calculated analytically based on the
Tresca-Guest yield criterion occurs under the autofrettage pressure pTa extr = 219.93MPa and
this is the maximum operating pressure which may be applied to the vessel. The calculations
carried out for the Huber-Mises-Hencky yield condition give pHa extr = 253.95MPa.

Table 1. Decrease of the equivalent stress and increase of the load capacity for several types of
vessels

Type of
the wall

Number of
layers or
junction
radius rj
[mm]

Calcula-
tions

Under operating Under maximum
pressure pressure

Maximum Decrease Maximum Increase of
strength of strength capacity capacity
σeq [MPa] ∆σeq [%] pmax [MPa] ∆p [%]

Layered optim. 2 layers analytical 239.63 24.48 171.02 24.48
under popr 25 layers analytical 176.65 44.33 207.71 51.18
Autofrettaged rj opt = 290.99 analytical 223.22 29.65 223.63 62.77
to rj opt rj opt = 291.60 FEM 223.16 29.67 222.51 62.24

Layered optim. 2 layers analytical 271.59 14.40 181.91 32.40
under pmax 25 layers analytical 251.54 20.72 246.77 79.61

Autofrettaged
to rj extr

rj extr = 400 analytical 249.99 21.21 253.95 84.84
rj extr = 4001) FEM 248.56 21.66 251.38 83.29
rj extr = 4002) FEM 235.51 25.77 266.79 94.52
rj extr = 4003) FEM 251.46 20.75 311.38 127.04

1) autofrettage pressure pFEMa extr 1 = 251.38MPa,
strain intensity εeq(ri) = 0.0067, εeq(ro) = 0.0015

2) autofrettage pressure pFEMa extr 3 = 266.79MPa,
strain intensity εeq(ri) = 0.0501, εeq(ro) = 0.0127

3) autofrettage pressure pFEMa lim = 311.38MPa,
strain intensity εeq(ri) = 0.1750, εeq(ro) = 0.0488

The distributions of equivalent stress σeq versus the radius r for the vessels autofrettaged to
the radius rj opt (dashed lines) and to the radius rj extr (solid lines) under the pressure popr (fine
lines) and under the pressure pa opt or pa extr (bold lines) are presented in Fig. 5. The dotted line
corresponds to the solid non-pressurized wall subjected to the maximum in this case pressure
popr = 137.39MPa.
The analytical solution of the autofrettaged vessel was compared with the analytical results

obtained for the optimum shrink-fit multi-layer vessels (Krasiński et al., 2013). The results are
gathered in Table 1. The H-M-H yield criterion was applied to solve the wall composed of 2 layers
and of 25 layers of the same thickness. The layered vessels were designed on the assumption of
equal equivalent stress at the inner surfaces of layers under the pressure popr = 137.39MPa. The
distributions of the equivalent stress versus the radius r are plotted in Fig. 6 (solid fine lines) and
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Fig. 5. Equivalent stress σeq of the wall autofrettaged to the radii: rj opt or rj extr, respectively,
versus radius r. Fine lines – under the pressure popr, bold lines – under the maximum

pressure pa opt or pa extr

Fig. 6. Distribution of σeq versus radius r for the vessel autofrettaged to rj opt and for the layered
vessel with σeq equalized for pressure popr = 137.39MPa

may be compared with the distribution for the vessel autofrettaged to the junction radius rj opt
(dashed fine lines). Bold lines correspond to the equivalent stresses which appear in these vessels
under the maximum pressure pmax for the shrink-fit vessels or pa opt for the autofrettaged vessel.
In this case, the maximum pressure pmax for the multi-layer vessels is the loading for which the
yield limit Sy is first reached at the inner surface of radius ri. Variations in the equivalent stress
across the wall determined for the multi-layer vessels under the pressure pmax which leads in
this case to the condition of maximum strength σeq equal to the yield limit Sy at the inner
surfaces of all layers are presented in Fig. 7. They are compared with the distributions obtained
for the vessel autofrettaged to the radius rj extr.
The residual radial stresses σresr calculated analytically for the autofrettaged vessel are il-

lustrated graphically in Fig. 8 together with the interlayer initial compressive stresses qi opt
which must be introduced into the layered vessel wall in order to equalize the equivalent stress
at the inner surfaces of layers under the operating pressure. The autofrettage process was so-
lved using the Huber-Mises-Hencky yield theory. The residual stress which occurs in the vessel
wall autofrettaged to the optimum junction radius rj opt can be compared with the interlayer
stresses qi opt which causes the same and equal equivalent stress under the operating pressure
popr = 137.39MPa. The residual radial stress which appears in the vessel wall autofrettaged



Numerical verification of analytical solution for autofrettaged high-pressure vessels 739

Fig. 7. Distribution of σeq versus radius r for the vessel autofrettaged to rj extr and for the layered
vessel with σeq equalized to the maximum value Sy

Fig. 8. Dashed lines – distributions of radial residual stress σresr for the vessels autofrettaged to rj opt
and to rj extr, respectively. Discrete distributions refer to the initial interlayer compressive stresses in

layered walls: 2-layer: • – qi extr, ◦ – qi opt, and 25-layer: N – qi extr, △ – qi opt

to the maximum radius rj extr = 400mm may be compared with the interlayer stresses qi extr,
which ensures the maximum equivalent stress σeq equal to Sy under the maximum operating
pressure pmax.
The autofrettage process was modelled by applying pressure to the inner surface of the

vessel, removing it and then calculating the residual stress field, followed by reloading with
the operating pressure. The finite element procedure was carried out first on the vessel auto-
frettaged with the pressure pFEMa opt = 222.51MPa which, under the assumed operating pressu-
re pFEMopr = 137.15MPa, ensures the equality of the equivalent stress at the outermost radii
σeq(ri) = σeq(ro) = 121.16MPa and at the limit radius produces σeq(rj opt) = 223.16MPa.
The maximum pressure which may be applied to this vessel is the autofrettage pressure pFEMa opt .
The results presented in Table 1 are closed to those predicted by the analytical approach. The
optimum radius rj opt of the elastic-plastic junction in the autofrettaged cylinder derived for
the elastic-perfectly plastic material does not differ significantly compared with that obtained
using an elastic-plastic with a strain hardening material model. The reason is that the maximum
strain intensity which appears at the inner radius εeq(ri) = 0.0035 is less than εpl = 0.0127.
Accordingly, only the first two rectilinear fragments of the stress-strain relationship were used
in the numerical procedure, likewise in analytical calculations. A certain small discrepancy is
caused by numerical errors.
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Moreover, the FEM and analytical results coincide on the assumption that the junction
radius rj extr = 400mm is achieved when the equivalent stress reaches the first the yield limit Sy
there. Such a situation occurs under the autofrettage pressure pFEMa extr 1 = 251.38MPa. The strain
hardening of the material was not engaged in the numerical procedure. While the strain intensity
at the outer radius εeq(ro) = 0.0015 is associated with the yield limit Sy, the strain intensity at
the inner radius εeq(ri) = 0.0067 is less than εpl = 0.0127 and corresponds to the Sy too. The
strain hardening has no influence on the numerical solution even for the autofrettage pressure
pFEMa extr 2 = 252.30MPa under which the strain intensity at the inner radius εeq(ri) = εpl = 0.0127
because at the outer radius there is still εeq(ro) = 0.0030 < εpl.
The influence of the parabolic part of the stress-strain curve on the finite element solution is

revealed only for the autofrettage pressure greater than pa > pFEMa extr 2. A distinct effect is observed
on the assumption that the strain intensity at the outer radius reaches εeq(ro) = 0.0127 = εpl,
which occurs for the autofrettage pressure pFEMa extr 3 = 266.79MPa. The strain intensity at the
inner radius becomes εeq(ri) = 0.0501 > εpl. Examination of the equivalent stress distributions
depicted in Fig. 9 leads to the conclusion that in the whole cross-section, the equivalent stress is
beyond the yield limit Sy, however, at the same time pFEMa extr 3 < p

FEM
a lim = 311.38MPa. The equ-

ivalent stress at the inner radius of the cylinder subjected to pFEMa lim reaches the ultimate tensile
strength σeq(ri) = Sut = 518.43MPa and may be considered as the maximum pressure for the
vessel. The results for a vessel autofrettaged with pressures pFEMa opt and p

FEM
a extr 1 are additionally

repeated in Fig. 9. Like in Figs. 6 and 7, fine lines refer to the distributions under the operating
pressure popr. Bold lines in Fig. 9 correspond to the equivalent stress distributions of the auto-
frettaged cylinder subjected in each case to the maximum pressure (equal to the autofrettage
pressure). The numerical results for both considered cases are summarized in Table 1.

Fig. 9. Equivalent stress σeq versus radius r under pressure popr (fine lines) and under maximum
pressure (bold lines) for the vessel autofrettaged to the radii: rj opt and rj extr, respectively

The equivalent stress distribution under the operating pressure popr for the cylinder subjected
to the autofrettage pressure pFEMa lim is of particular interest. The increase of the radius, starting
from ri, is at the beginning associated with the decrease of the stress. In the vicinity of the
radius r = 236.80mm, there is a marked increase of the stress which continues until the outer
radius ro is reached. It is caused by the distribution of circumferential residual stress which
changes the sign from minus to plus.
The distributions of radial residual stress σresr after the autofrettage pressure is removed for

all cases considered in the finite element procedure are plotted in Fig. 10. It can be seen that
despite the increase of the autofrettage pressure pFEMa lim > p

FEM
a extr 3 > p

FEM
a extr 1, the corresponding

distributions of residual radial stress tend to decrease. Moreover, the relative decrease of the
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maximum values of σresr (15.36% and 32.27%) is greater than the relative increase of the au-
tofrettage pressure pa (6.13% and 23.87%). Such a relation may occur as the strain hardening
was taken into account in the FEM procedure.

Fig. 10. Distributions of radial residual stress σresr versus radius r for vessels autofrettaged to the
radii: rj opt and rj extr, respectively

The finite element calculations were carried out for the 16Mo3 material for which a stress-
strain approximation was created using the data derived from the tensile tests. In particular, this
steel seems to be a good material to fabricate thick-walled cylinders which are to be subjected to
the autofrettage process, mainly on account of a high ultimate strain value εut and a considerable
difference between εel and εpl. This material is plastic enough and able to withstand large
deformations, which is the key requirement in the autofrettage process. Owing to the latter
property, the favourable effects of strain hardening on the vessel performance manifest at high
autofrettage pressures exceeding pFEMa extr 2 = 252.30MPa.
The horizontal junction segment (plastic plateau) of the stress-strain curve approximation

(Fig. 2) is called the perfectly plastic flow and corresponds to the yield pointSy. The influence of
the length of the plastic plateau on some selected strength parameters is shown in Fig. 11. The
total length of the plateau was subdivided into five segments of equal length ∆ε = 0.0022, and
FEM calculations were carried out for the appropriate five approximations of the stress-strain
curve. The parabolic part of the approximation had a maximum (as previously) at the point
with the coordinates εut, Sut but in each case the parabola was passing through a different
point with coordinates depending on the plastic plateau division. The results are summarized
in Fig. 11 where the bold solid line represents the autofrettage pressure pFEMa extr 3 which increases
with the increase in the plastic plateau length. The fine solid line corresponds to the operating
pressure popr under which the equivalent stress at the outermost radii was set equal to the values
indicated in Fig. 11 by the dashed line. It should be noted that all considered parameters of the
autofrettaged vessel vary linearly versus the length of the plastic plateau. It appears that an
increase in length of the plastic plateau, from zero to its maximum value, gives rise to a slight
increase (by 4.77%) in the autofrettage pressure and to a significant reduction (by 11.40%) of
the operating pressure popr equalizing the equivalent stress at the outermost radii.
The autofrettage has obvious advantages when applied to thick walls characterized by a high

thickness coefficient defined as β = ro/ri. Several strength parameters of the vessel autofrettaged
with the optimum pressure versus the coefficient β are presented in Fig. 12. The examination of
these relationships leads to the conclusion that a decrease in the coefficient β in 40% gives rise
to reduction of the maximum pressure pa extr by 73.70%, while the maximum equivalent stress
at the junction radius increases by 22.48%.
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Fig. 11. Autofrettage pressure pFEMa extr 3and the pressure popr equalizing the equivalent stress at the
outermost radii (along dashed line) versus the length of the plastic plateau

Fig. 12. Some chracteristic parameters of the autofrettaged vessel versus the thickness coefficient β

5. Final remarks

The presented investigations confirm the advantages of the autofrettage technique applied to
thick-walled, high-pressure vessels. The advantages were demonstrated using an example of a
cylindrical vessel with the outer diameter of 800mm regarded to be the maximum value with
respect to costs for the solid vessel. For vessels with greater outer diameters, a better solution
is a layered wall composed of thin layers either shrink-fitted, bent along the screw or spiral
line or fabricated using the Smith technology. The maximum value of the thickness coefficient
β = 2.00 was assumed which is admissible in the strength analysis of the pressure vessels
under the regulations of the Polish Office of Technical Inspection (OTI). The vessel is made of
ductile 16Mo3 steel which is appropriate for autofrettage processes because of its mechanical
behaviour, in particular of the high value of the ultimate strain εut. The analytical well-known
approach based on Lame’s solution reveals that the autofrettage optimum pressure results in a
30% decrease of the equivalent stress under operating pressure. However, the strength capacity
of this vessel increases by 63% with respect to the solid virgin wall. Even greater spectacular
strength effect may be achieved for the cylinder autofrettaged across its wall giving rise to the
load bearing capacity by 85%.
Residual stresses can be also generated by introducing the interlayer interference fit into the

multi-layer cylinder. The advantages of autofrettage applied to the solid wall were compared with
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the results obtained for the optimum designed layered vessels. The wall composed of 2 layers
exhibits a 24% decrease of the equivalent stress under the operating pressure, and this result is
similar to that obtained for the solid wall subjected to optimum autofrettage, but the appropriate
increase of the load-bearing capacity by 25% is even less. The strength possibilities of the wall
made of a large number thin layers may be utilised in a larger degree. The results of analytical
calculations compiled in Table 1 suggest that the advantages of layered wall composed of 25
layers are comparable to those of the autofrettaged wall.
The results of FEM simulation and their comparison with the analytical approach is of

particular importance. Since the vessel wall is made of a typical material used in the autofrettage
technology, the strain hardening effect occuring beyond the yield limit cannot be utilised. As
the plastic plateau is of considerable length, the results of FEM calculations for autofrettaged
vessel under the optimum and maximum pressures coincide (within the admissible error limits)
with the analytical results. Major differences are revealed for a cylinder autofrettaged with a
pressure which produces the equivalent stress equal to the ultimate stress at the inner surface.
Such a vessel exhibits the maximum possible load carrying capacity for the assumed dimensions
and the material which exceeds by 127% the pressure that can be withstood by a solid wall of
the same dimensions and material.
In conclusion, it should be mentioned that the well-designed autofrettage technique has

obvious advantages over other technologies of thick-walled vessels, in particular over multi-
layer technologies. The design is material-saving and cost-effective. In the case of shrink-fit
cylinders, care must be taken to ensure precise fits between the layers, which presents serious
difficulties when handling elements of considerable length and diameters. Moreover, the shrink-
fit cylinders have to be heated (or cooled down), which requires large furnace installations. The
Smith method utilises the thermal shrinkage of the longitudinal welds whose magnitude can
be only approximately determined. In the light of the current expertise in the field of forging
machines (presses and rollers), only high-efficiency pumps are required in fabrication of a typical
thick-walled autofrettaged vessel.
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